
How Threat Hunting Revealed Covert Sports Piracy in Data
Science Environments

Assaf Morag, Threat Intelligence Director, Aqua Security’s Aqua Nautilus Team

To keep up with the ever-evolving world of cybersecurity, Aqua Nautilus researchers deploy
honeypots that mimic real-world development environments. During a recent threat-hunting
operation, they uncovered a surprising new attack vector: threat actors using misconfigured
servers to hijack environments for streaming sports events. By exploiting misconfigured
JupyterLab and Jupyter Notebook applications, attackers drop live streaming capture tools and
duplicate the broadcast on their illegal server, thus conducting stream ripping. In this blog, we
explain how our threat hunting operation helped us uncover this and how we analyzed this
attack using Aqua Tracee and Traceeshark.

Nautilis’ Threat Hunting Efforts
When utilizing honeypots to collect threat intelligence, you assume that any event is malicious.
In reality, there are many scanners that trigger the honeypots, script kiddies that trigger events
with their curiosity, or trivial tools and failed attack attempts that exploit initial access but fail to
mature to a full-blown attack. Strong automation and machine learning were tailored to
distinguish between interesting and non-interesting events. But sometimes we miss, and when
that happens, we utilize threat hunting as a compensative measurement.

In our recent threat hunting operation, we focused on analyzing inbound network traffic and
dropped and executed binaries within containerized environments to uncover potential hidden
security breaches. Our honeypots generate thousands of events per day, automatically saved to
various data environments for storage (data lake) and analysis (document database and data
warehouse). By leveraging our data warehouse, we cross-referenced some of our signatures to
link suspicious binaries with network events, revealing patterns indicative of illicit activity. Once
these connections were established, we honed in on specific events and sessions tied to these
anomalies, enabling us to isolate, examine, and address potential security threats in real time.

We found several dozen events which indicated that a benign tool was dropped and executed.
The tool ‘ffmpeg’ is an open source software suite used for recording, converting, and
streaming audio and video. It supports a wide range of multimedia formats and is widely
utilized for video processing, compression, and live streaming applications. Threat intelligence
platforms such as Virus Total indicated that this is not a malicious tool, and indeed it is not
considered malicious or potentially unwanted, thus this was never classified as an attack, at
least until now.

About Jupyter Lab & Jupyter Notebooks
JupyterLab and Jupyter Notebook are two powerful interactive environments for data science.
Many organizations utilize these tools for their everyday data operations, but there are some
potential risks, if not properly secured. Often managed by data practitioners who may lack
awareness of common misconfigurations. Including connecting the server to the internet with
open access without authentication, which allows unauthorized users to run code. Additionally,
exposing the Jupyter stack to the internet without firewalls, making it vulnerable to attacks.
Token mishandling is another issue, as exposed tokens can grant full access. Based on Shodan
there are ~15,000 Jupyter servers connected to the internet, while ~150 (1%) enable remote
code execution. Nautilus’ analysis shows some private personal Jupyter notebooks, as well as
corporate and startup whose servers are exposed to anyone, actively exploited.

Running the Jupyter stack with restricted IPs, strong authentication, HTTPS, and token
management can mitigate these risks, helping secure sensitive data and code.

About Illegal Live Streaming of Sports Events
Illegal live streaming of sports events is a growing threat to the industry, cutting into revenue
streams for leagues, broadcasters, and legitimate platforms. With high-speed internet and
accessible streaming tools, unauthorized broadcasts have become widespread, impacting not
only big leagues but also smaller teams that rely on paid viewership.

To counter this, sports organizations use advanced technologies like AI-based detection,
watermarking, and digital rights management (DRM) to track and shut down illegal streams in
real time. Legal actions and collaborations with governments help enforce copyright, while
public awareness campaigns aim to shift viewer behavior.

The Attack Flow
Our Jupyter Lab and Jupyter Notebook honeypots reveal both vulnerabilities and weak
passwords. In this case, threat actors exploited unauthenticated access to Jupyter Lab and
Jupyter Notebook to establish initial access and achieve remote code execution.

First, the attacker updated the server, then downloaded the tool ffmpeg. This action alone is
not a strong enough indicator for security tools to flag malicious activity. Next, the attacker
executed ffmpeg to capture live streams of sports events and redirected them to their server.

Below you can see the entire attack flow:

Figure 1: The entire attack flow

This straightforward attack is easy to overlook. While the immediate impact on organizations
might appear minimal (though it significantly affects the entertainment industry), it could be
dismissed as merely a nuisance.

However, it's crucial to remember that the attackers gained access to a server intended for data
analysis, which could have serious consequences for any organization’s operations. Potential
risks include denial of service, data manipulation, data theft, corruption of AI and ML processes,
lateral movement to more critical environments, and, in the worst-case scenario, substantial
financial and reputational damage.

Analyzing the Attack with Aqua Tracee and TraceeShark
Aqua Tracee is a runtime security and forensics tool for Linux, utilizing eBPF technology to trace
systems and applications at runtime, analyze kernel level events to detect suspicious behavioral
patterns, and capture forensics artifacts. You can read about its evolution in our blog “The Story
of Tracee: The Path to Runtime Security Tool”.

Traceeshark brings Linux runtime security monitoring to Wireshark, enabling cross-platform
analysis of Tracee events. With Wireshark’s interactive filtering and data aggregation, large
Tracee datasets become manageable. Users can capture Tracee events in Wireshark locally,
semi-locally via Docker, or remotely over SSH. This integration allows combined system and
network analysis, adding context to host-based network monitoring. You can read more about
Traceeshark in our blog “Go deeper: Linux runtime visibility meets Wireshark”.

https://www.aquasec.com/blog/go-deeper-linux-runtime-visibility-meets-wireshark/
https://www.aquasec.com/blog/open-source-container-runtime-security/
https://www.aquasec.com/blog/open-source-container-runtime-security/

Tracee enables capturing Linux events on the server, including network activity, files, and
dumps of suspicious memory regions. We consolidate the events and network data generated
by Tracee into a single Wireshark-compatible .pcapng file to begin our investigation

We then upload the `.pcapng` file to Traceeshark, a modified version of Wireshark tailored for
our analysis. As shown in Figure 2 below, the Wireshark framework has been enhanced to
support Tracee’s data points, including ‘protocol type,’ ‘container ID,’ process and parent
process IDs, among others.

Figure 2: Traceeshark main view

As can be seen in Figure 3, there are over 8,000 events, thus going over them one-by-one can
be tricky and time consuming. We will leverage various analytics capabilities to gain timely
insights into this attack. Using the ‘statistics’ options, we can assess the volume of signatures
and events, indicating that this is a relatively small session with limited potential for a
significant attack. However, we will proceed with our analysis to ensure thorough evaluation.

Figure 3: Number of packets

So far, the evidence may not seem compelling. However, as shown in Figure 4, the situation
becomes suspicious when observing the precess tree suggesting of numerous `ffmpeg`
execution commands, especially with the unusual pattern of IP addresses involved. If you're
familiar with `ffmpeg` and its typical operations, you’ll immediately recognize the nature of this
abnormal server activity. If not, these several command executions related to traffic would still
raise significant red flags.

Figure 4: Traceeshark’s process tree

With the dedicated filter we integrated into Traceeshark, we can now delve deeper into
analyzing this attack. Using the ‘Container’ filter, we can isolate events at the container level,
viewing only ‘Events,’ ‘Network’ packets, or ‘Signatures’ that were triggered. In this instance,
we’ll apply the ‘Important’ filter, configured to highlight “Significant” events and signatures
identified based on our expertise.

Figure 5: Traceeshark’s filters

In this case, this is a JupyterLab server with misconfiguration. It is connected to the internet
with no authentication required, so if an attack puts in his browser “http[:]//IP-Address[:]8888/
/tree?”, allowing a remote code execution.

Figure 6: Unprotected Jupytar Notebook

Continuing with Traceeshark we can observe the discovery commands of the threat actor as
illustrated in Figure 7 below.

Figure 7: Traceeshark’s filtered to display important events

Next, we observe the download of `ffmpeg` (MD5: ecf054bf36972571efa68df489a9e969) from
the MediaFire file-sharing website. This download source adds another layer of suspicion, as it
suggests the file may not be an official or trusted version, potentially carrying malicious
modifications or being used in an unauthorized manner. But inspection of the file in Virus Total
and IDA suggests, it’s benign.

Figure 8: Traceeshark’s filtered to display important events

Wireshark allows users to double-click a packet to examine its contents, and Traceeshark
extends this functionality by displaying the content of Tracee logs. In Figure 10 below, we see
the executed command in detail. Here, the tool `./ffmpeg` is launched, with the streaming
source (`-i`) set to `x9pro.xyz`, accompanied by flags to control the streaming speed and
minimize detection. The output is directed to `ustream.tv`, revealing the intent to stream
captured content to an external platform discreetly.

Ustream offers various monetization options for content creators. Earnings primarily come
from ad revenue, where ads placed on videos generate income per view or click, as well as from
paid subscriptions for exclusive content. During live streams, creators can also earn through
donations or tips from viewers. To qualify for these earnings, creators often need to meet
minimum requirements for followers or view counts. Unfortunately, threat actors exploit
similar methods by stream-ripping sports event feeds and illegally broadcasting them on their
own channels to profit from unauthorized views and ad revenue.

Figure 9: Traceeshark’s specific command execution event

After analyzing the sources of live streaming the threat actors tried capturing via our server, we
concluded that threat actors targeted live streaming broadcastss of the Qatari beIN Sports
network. The IP address they used was from Algerian AS (41.200.191.23), indicating that they
might be of Arab speaking origin as well.

Figure 10: The targeted source broadcasted the UEFA Champions League fixture between
Shakhtar Donetsk and BSC Young Boys played on November 6, 2024

Mapping the Campaign to the MITRE ATT&CK Framework
Our investigation showed that the attackers have been using some common techniques
throughout the campaign. Here we map each component of the attack to the corresponding
techniques of the MITRE ATT&CK framework:

Initial Access Execution Exfiltration

Exploit Public-Facing Application
(T1190)

Command and scripting interpreter:
Unix Shell (T1059.001)

Exfiltration Over Alternative Protocol: Exfiltration
Over Unencrypted/Encrypted Non-C2 Protocol

(T1048.003)

Resource Hijacking:

Initial Access
 Exploit Public-Facing Application : Attackers exploited misconfigured JupyterLab and Jupyter

Notebook applications, gaining unauthenticated access to establish initial access to the
development environment.

Execution
 Command and Scripting Interpreter - Unix Shell : The attackers executed commands

through the Jupyter Notebook to install and run ffmpeg.

Exfiltration
 Exfiltration Over Alternative Protocol - Exfiltration Over Unencrypted/Encrypted Non-C2

Protocol: The attackers exfiltrated video content through ffmpeg streams directed to
external destinations.

Impact

https://attack.mitre.org/

 Resource Hijacking : The attackers use the victims bandwidth to transfer streaming data.

Detection and Mitigation
In this blog, we explore how behavioral analysis, combined with proactive threat hunting, plays
a crucial role in identifying hidden attacks and potentially unwanted activities.

Traditional security tools often miss subtle indicators, especially in complex environments like
JupyterLab and Jupyter Notebook, where legitimate tools can be used for unauthorized
purposes. By using behavioral analysis to spot anomalies—such as the unusual deployment and
execution of `ffmpeg` for live-stream capture—our team uncovered covert sports piracy
operations that bypassed standard alerts.

This approach, leveraging tools like Aqua Tracee and Traceeshark, highlights how advanced
monitoring of patterns and behavioral indicators can detect misuse that may appear benign at
first glance but could lead to significant security and operational impacts.

Indications of Compromise (IoCs)

Type Value Comment

IP Addresses

IP Address 167.99.93.212 Attacker IP

IP Address 41.200.191.23 Attacker IP

	To keep up with the ever-evolving world of cybersecurity, Aqua Nautilus researchers deploy honeypots that mimic real-world development environments. During a recent threat-hunting operation, they uncovered a surprising new attack vector: threat actors using misconfigured servers to hijack environments for streaming sports events. By exploiting misconfigured JupyterLab and Jupyter Notebook applications, attackers drop live streaming capture tools and duplicate the broadcast on their illegal server, thus conducting stream ripping. In this blog, we explain how our threat hunting operation helped us uncover this and how we analyzed this attack using Aqua Tracee and Traceeshark.
	Nautilis’ Threat Hunting Efforts
	About Jupyter Lab & Jupyter Notebooks
	About Illegal Live Streaming of Sports Events
	The Attack Flow
	Analyzing the Attack with Aqua Tracee and TraceeShark
	Mapping the Campaign to the MITRE ATT&CK Framework
	Detection and Mitigation
	Indications of Compromise (IoCs)

